NEURO-ADAPTIVE CONTROL SYSTEM FOR NONLINEAR TECHNOLOGICAL OBJECTS
Keywords:
Key words: nonlinear dynamic object, neuron-fuzzy identification, interactive adaptation, training, fuzzy logic, neural network, model.Abstract
Abstract: An adaptive identifier is proposed for a neuron-fuzzy control system of a nonlinear dynamic object that operates under conditions of uncertainty of internal properties and the external environment. Algorithms of structural and parametric identification in real time, which is a combination of the algorithm for identifying the coefficients of linear controls and the method of the theory of interactive adaptation, are developed. Adaptive neuron-non-linear control system for a nonlinear dynamic object, contain an identifier and a regulator built on the basis of the fuzzy Sugeno model. Such a regulator structure in combination with the optimal choice of fuzzy controller parameters allows, with a minimum of settings, to implement adaptive control systems of undefined and non-stationary mechanisms regardless of their structure. To impart adaptive properties to the fuzzy identifier, it is suggested to estimate the rate of change of the control error. The developed hybrid model built on the basis of neural networks and fuzzy models, it makes it possible to improve the efficiency of the task of managing complex dynamics kimi objects under uncertainty.
References
Omato S. Khalid M. Yusof R. Neuropravlenie and its annexes Book 2. M.: IPRZhR. 2000.
Mamdani E. H. Rule-based Fuzzy Approach to the Control of Dynamic Processes II IEEE Trans, on Comput. - 1981. - No. 12. - P. 432-440.
Zadeh L. Fuzzy logic, neural network and soft computing. Communications of the ACM. -1994. -Vol. 37. - №3. - P. 30-39.
Mamasodikova, N. Y., Siddikov, I. X., & Dilmurodov, X. E. (2024, February). Building models of technological processes based on neuro-fuzzy technology. In Journal of Physics: Conference Series (Vol. 2697, No. 1, p. 012029). IOP Publishing.
Siddikov, I., Mamasodikov, Y., Mamasodikova, N., & Jurayeva, G. (2024). Simulation modeling of a synergetic chemical reactor control system. In BIO Web of Conferences (Vol. 84, p. 05026). EDP Sciences.
Мамасодикова, Н. (2023, November). Алгоритм восстановления неконтролируемых координат объекта управления. In Conference on Digital Innovation:" Modern Problems and Solutions".
Мамасодиков, Ю., Мамасодикова, Н. Ю., & Алихонов, Э. Ж. (2023). Построение моделей систем управления мультисервисными сетями на основе системного подхода. Research and implementation.
Siddikov, I., Mamasodikov, Y., Mamasodikova, N., & Khujanazarov, U. (2023). Methods for optimizing data processing based on fuzzy adjustment of time series elements and identification model variables. In E3S Web of Conferences (Vol. 452, p. 03010). EDP Sciences.
Сидиков, И. Х., Мамасадиков, Ю., Мамасодикова, Н. Ю., & Махмудов, И. А. (2022). Нечетко-ситуационная модель управление технологических состояний нефтехимических установок и комплексов. Science and Education, 3(9), 202-213.
Isamiddin, S., Mamasodikova, N., Rayimdjanova, O., Khalmatov, D., & Mirzaaxmedova, X. (2021). Algorithms for synthesis of a fuzzy control system chemical reactor temperature.
Siddikov, I. X., Mamasodikova, N. Y., Khalilov, M. A., Amonov, A. K., & Sherboboyeva, G. B. (2020, November). Formalization of the task of monitoring the technological safety of industrial facilities in conditions of indistinctness of the initial information. In Journal of Physics: Conference Series (Vol. 1679, No. 3, p. 032022). IOP Publishing.
Siddikov, I., Mamasodikova, N., Khalmatov, D., Kadirova, N., Mirjalilov, O., & Primova, G. (2021, July). Development of neural network forecasting models of dynamic objects from observed data/I. In Siddikov, N. Mamasodikova, D. Khalmatov, N. Kadirova, O. Mirjalilov, G. Primova//CEUR Workshop Proceedings (Vol. 2899, pp. 71-77).
Siddikov, I. K., Mamasodikova, N. Y., & Alimova, G. R. (2019). Automation System of the Technologikal Monitoring of Oil Enterprises Based on a Modeling System. Journal of Advanced Research in Science, Engineering and Technology, 6, 11891-11896.
Игамбердыев, Х. З., Марахимов, А. Р., & Сиддиков, И. Х. (2014). Нечетко-ситуационное управление технологической безопасностью нефтехимических установок и комплексов. Промышленные АСУ и контроллеры, (8), 3-7.
Мамасодикова, Н. Ю., & Мирзаахмедова, Х. Б. (2020). Система аналитического контроля параметров технологических агрегатов нефтехимических производств. Наука. Образование. Техника, (1), 15-22.
Urinov, K. O., Amonov, A. K., Jumanov, K. A., Mujdibaev, I. S., & Mamasadikova, N. M. (2020, September). Abnormal behavior of the torque in the system of magnetite-maghemite γ–Fe2O3–Fe3O4. In IOP Conference Series: Materials Science and Engineering (Vol. 919, No. 2, p. 022012). IOP Publishing.
Мамасодикова, Н. Ю. (2019). Разработка алгоритма аналитического контроля технологических параметров динамических объектов. Известия Юго-Западного государственного университета. Серия: Управление, вычислительная техника, информатика. Медицинское приборостроение, 9(4), 153-162.
Erkaboev, A., Obidov, J., Madmarova, U., & Alikhonov, E. (2023). Analysis of the ISO 9001 standard model of risk management in analytical testing laboratories. In E3S Web of Conferences (Vol. 452, p. 06009). EDP Sciences.
Mamasadikov, Y., & Jamoldinovich, A. E. (2022). A Device for monitoring the weight of cotton ribbons. International Journal of Advance Scientific Research, 2(12), 64-72.
Mamasadikov, Y., & Alixonov, E. J. (2022). Optoelectronic device for regulation of linear density of cotton tape in the process of deep processing of raw materials in cotton-textile clusters.«. Paxta to ‘qimachilik klasterlarida xom-ashyoni chuqur qayta ishlash asosida mahsulot ishlab chiqarish samaradorligini oshirishning iqtisodiy, innovastion-texnologik muammolari va xalqaro tajriba» mavzusida Xalqaro ilmiy-amaliy anjuman. Namangan muhandislik texnologiya instituti-2022 yil, 27-28.
Мамасадиков, Ю., & Aлихонов, Э. Ж. (2022). Роль оптоэлектронного автоматического контроля линейной плотности хлопковой ленты в решении задач в легкой промышленности.“. Yengil sanoat tarmoqlari, muammolari, tahlil va yechimlari” mavzusida Vazirlik miqyosida ilmiy va ilmiy-texnik аnjuman ma’ruzalar to ‘plami, FarPI, 303-306.
Mamasadikov, Y., & Alikhonov, E. J. (2022). An optoelectronic device that controls the linear density of cotton tape during quality processing of cotton raw materials. Science and Education, 3(9), 168-177.
Алихонов, Э. Ж. (2022). Определение линейной плотности хлопковых лент. Журнали, 233.
Jamoldinovich, A. E. (2022). About the Integration of Information Security and Quality Management. Eurasian Research Bulletin, 12, 18-24.
Алихонов, Э. Ж. (2021). Оптоэлектронное устройство для автоматического контроля линейной плотности хлопковые ленты. Научно-Технический журнал Ферганского политехнического института, 24(2), 151-154.
Mamasadikova, U. Y., & Ergashev, S. F. (2022). Quyosh kollektorlarini xaroratini masofadan nazorat qilish uchun optoelektronik qurilma. Ilmiy texnika jurnal, 26(1), 111-116.
Ergashev, S. F., Axmadaliyevich, K. A., & Yusupjonovna, M. U. (2021). Optoelectronic device for remote temperature control of sanitary units. EPRA International Journal of Multidisciplinary Research, 7(6), 211-215.
Yusupjan, M., & Muhammadsharifovna, K. G. (2023). Device for control of raw silk thickness based on optoelectronic generator. Open Access Repository, 10(11), 17-20.
Алихонов, Э. Ж. (2021). Определение линейной плотности хлопковые ленты фотоэлектрическим методом. Universum: технические науки, (11-2 (92)), 35-38.
Alikhonov, E. J. (2021). Determination of linear density of cotton ribbons by photoelectric method. Science and Education, 2(11), 461-467.
https://scholar.google.com/citations?user=WYtCWa0AAAAJ&hl=ru
https://scholar.google.com/citations?user=5ghIKewAAAAJ&hl=ru